dica de leitura
Sugestão de Leitura
27 de junho de 2018

Fórmula de Bhaskara: Para que serve e como usar?

3ewr

No complexo mundo da matemática, existem inúmeras fórmulas e cálculos que os alunos usam para resolver diversos problemas. A fórmula de Bhaskara é uma das mais estudadas e temidas pelos alunos. Esse artigo que o Colégio Amplo preparou para você, vai te mostrar para que serve e como usar essa fórmula que já tirou o sono de muita gente. Confira!

Fórmula de Bhaskara

Essa fórmula nada mais é do que um método para encontrar as raízes reais de uma equação do segundo grau fazendo uso apenas de seus coeficientes. Vale lembrar que coeficiente é o número que multiplica uma incógnita em uma equação. Em sua forma original, a fórmula de Bhaskara é dada pela seguinte expressão:

Para utilizar essa fórmula, vale lembrar que toda equação do segundo grau deve ser escrita da seguinte forma:

Entendendo a equação

Os coeficientes dessa equação são os números que ocupam o lugar de “a”, de “b” e de “c”. Portanto, o coeficiente “a” é o número que multiplica x2; o coeficiente “b” é o número que multiplica x; e o coeficiente “c” é o número que não multiplica incógnita.

Como aplicar a fórmula de Bhaskara para resolver as equações?

Resolver uma equação do segundo grau é encontrar os valores de x ou da incógnita do problema que fazem com que essa equação seja igual a zero.

A fórmula de Bhaskara apenas exige que o valor numérico de cada coeficiente seja substituído. Após isso, basta você realizar as operações matemáticas indicadas pela fórmula para obter as raízes da equação. Mas esse método é dividido em três etapas para facilitar a compreensão dos alunos.

Calcule a discriminante

Discriminante é a expressão presente dentro da raiz na fórmula de Bhaskara. É comumente representado pela letra grega Δ (Delta) e recebe esse nome pelo fato de discriminar os resultados de uma equação da seguinte forma:

Δ < 0, então a equação não possui resultados reais;

Δ = 0, então a equação possui apenas um resultado real ou possui dois resultados iguais.

Δ > 0, então a equação possui dois resultados distintos reais.

Para calcular as raízes de uma equação do segundo grau, primeiramente calcule o valor numérico de Δ.

Substitua a discriminante e os coeficientes na fórmula de Bhaskara

Geralmente a fórmula de Bhaskara é ensinada apenas da seguinte forma:

Nessa etapa, basta substituir os valores de Δ e dos coeficientes da equação do segundo grau na fórmula acima.

Calcule as raízes da equação

Você deve ter notado que na fórmula de Bhaskara que existe um sinal “±”. Esse sinal indica que devem ser realizados dois cálculos. O primeiro para o caso em que o número que o segue seja positivo e o segundo para o caso em que o número que o segue seja negativo. É comum nomear cada um desses resultados como x’ e x” ou x1 e x2.

Observe:

Exemplo:

Calcule as raízes da equação x2 + 12x – 13 = 0.

Utilizando a fórmula de Bhaskara, você deve separar os coeficientes da equação.

a = 1, b = 12 e c = – 13

Δ = b2 – 4ac

Δ = 122 – 4·1·(– 13)

Δ = 144 + 52

Δ = 196

Agora que você tem o valor de Δ, siga adiante:

 

x = – b ± √Δ
      2·a

x = – 12 ± √196
      2·1

x = – 12 ± 14
      2

Depois, encontre as raízes da equação do segundo grau.

 

x’ = – 12 + 14
       2

x’ = 2
     2

x’ = 1

x” = – 12 – 14
      2

x” = – 26
      2

x” = – 13

Portanto, as raízes da equação x2 + 12x – 13 = 0 são 1 e – 13.

Fale Conosco / Assessoria de Comunicação Social:

comunicacao.assessor@unifebe.edu.br / 47 3211-7223

Postagens relacionadas

O lado bom da vida
Dicas

O lado bom da vida


25 de dezembro de 2020
Uma ajudinha nos estudos: técnica pomodoro
Ensino Médio

Uma ajudinha nos estudos: técnica pomodoro


18 de dezembro de 2018
A importância das campanhas de Outubro Rosa e Novembro Azul
Comunidade

A importância das campanhas de Outubro Rosa e Novembro Azul


19 de novembro de 2018
  • Visualizar por ano
  • Visualizar por categoria
Skip to content